Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties.

نویسندگان

  • Yahya Alivov
  • Vivek Singh
  • Yuchen Ding
  • Logan Jerome Cerkovnik
  • Prashant Nagpal
چکیده

Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO₂) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We d...

متن کامل

Calculation of Electronic and Optical Properties of Doped Titanium Dioxide Nanostructure

By means of first principles calculations we show that both rutile and anatase phases of bulk TiO2 doped by S, Se or Pb can display substantial decreasing in the band gap (up to 50%), while doping by Zr does not sizably affect the band-gap value. Moreover, the absorption edge is shifted (up to 1 eV) to the lower energy range in the case of TiO2 doped by S or Pb that opens a way to enhancin...

متن کامل

Synthesis and Investigation of Optical and Magnetic Properties of Co-Doped effect on Zinc Oxide Nanoparticles

In this study, the effect of simultaneous doping of magnesium, calcium, and copper ions on the properties of zinc oxide doped with cobalt was investigated. The sol-gel method has been used for the synthesis of nanoparticles. The structural and optical properties of the synthesized nanoparticles were investigated using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and DRS spectroscopy. ...

متن کامل

Ni-doped TiO2 nanotubes for wide-range hydrogen sensing

Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen ...

متن کامل

Doi: 10

Boron nitride nanotubes (BNNTs) [ 1,2 ] and boron nitride nanosheets (BNNSs) [ 3 ] have gained increasing attention for their structural similarity to carbon nanotubes (CNTs) and graphene, respectively. These BN nanostructures are wide-bandgap materials ( ∼ 6 eV), and their electronic properties are different from those of CNTs and graphene. In addition, BNNTs and BNNSs offer intriguing propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 18  شماره 

صفحات  -

تاریخ انتشار 2014